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The interaction of a long coherent  wave with the turbulence on the surface of a liquid is in- 
vest igated within the f ramework  of the theory of weak turbulence.  A closed sys tem of equa- 
tions is obtained which consis ts  of the dynamic equation for the coherent  wave and equations 
of kinetic type describing the turbulent subsys tem.  It is shown that because of the in terac-  
tion with the turbulent subsystem,  coherent  waves with wave vectors  identical in magnitude 
but opposite in direct ion are coupled. The additional attenuation of the coherent  wave be-  
cause of the interaction is es t imated;  this attenuation may be considerably g rea te r  than that 
caused by molecular  v iscos i ty .  A change in the spec t rum of height co r r e l a to r s  of the liquid 
surface is seen in the presence  of a coherent  wave. 

1. Formulat ion of the P rob lem.  A situation often appears in which a low-frequency oscillation, 
whose phase may be regarded  as determined,  is super~osed on a turbulent motion. The turbulence resul ts  
in an additional attenuation of the waves, and due to the modulation of the hydrodynamic motion of the long 
wave the turbulence becomes inhomogeneous and anisotropic.  This interaction between the long (coherent) 
wave and the turbulence can be taken into considerat ion in the theory of weak turbulence and this exactly is 
the content of the presen t  work.  

The theory  of local isotropic and homogeneous weak turbulence has been developed in the works of 
Zakharov and Filonenko [1, 2], in which the s ta t ionary distribution n k of quasipart ic les ,  i.e.,  the normal  
oscil lations of the liquid surface,  is obtained, through which the spect ra l  density of the energy of turbulence 
E(k) = Wknk is expressed.  

n~ = elk -~ (k < k,). n~ = c jc - " ,  (~ > ~,1) (1.1) 

Here the f i r s t  distribution function cor responds  to gravi ty  waves and the second to capi l lary  waves; 
k 0 is the capi l lary  constant .  Due to the dispersion of the waves at the surface of the liquid their interaction 
may be re la t ive ly  weak if the mean energy of the agitation is not ve ry  large and a wave collapse does not 
occur .  Unlike the spec t ra  of Phillips [3] the distributions (1.1) are obtained for waves without whitecaps. 
We note that in an incompress ib le  liquid the turbulence is always strong because of the absence of d i sper -  
sion near  vor t ices  that are s ta t ionary with r e spec t  to the liquid. At the same time for surface waves there 
is a wide range of disturbance pa rame te r s ,  where the concept of weak gauge of mutually interact ing p e r -  
turbations,  which are descr ibed by the kinetic equation, is applicable. Waves at the surface of a liquid 
were investigated by Hasselman [4] with the use of kinetic equations. 

In the presence  of a long wave the law of dispers ion w k of shor t -waveper turba t ions  becomes a func- 
tion of r and t. The dependence on r and t can be obtained if the spec t rum of theshor t -wave perturbat ions 
is sought in a sys tem of reference  moving with the surface of the liquid executing the long-wave motion. In 
this sys tem of reference  forces  of inert ia  are acting, and due to the inhomogeneous deformation of the s u r -  
face caused by the long wave, the local scale size changes,  while due to the slope of the surface the normal  
component of the gravi ty  changes.  As a result ,  in the law of dispersion of the short  wave there appears a 
dependence on its position on the long wave. If one changes back to the s ta t ionary sys tem of reference ,  
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then in the law of dispersion of short  waves a Doppler shift appears along with the cor rec t ions  associated 
with the factors  mentioned above; this Doppler shift plays an important role.  We note that the change of 
the profile of a short  wave on a long wave was investigated in [5], but the Doppler shift is not considered 
there .  

The kinetic equation for the distribution function, proportional to the mean squared modulus of the 
amplitudes of normal  oscillations of the liquid surface,  i.e., gravity or capi l lary  waves, can be written also 
in the spatially inhomogeneous case .  It has the form 

~n~ 00)1~ Onlc Oo)i~ o~nlc 
Ot t Ok Or Or Ok -§ r,,n~ = I ~ (n,3 (1 .2 )  

where n k is the distribution function of the quasipart ic les ,  co k is the frequency of the surface oscillations, 
I" k is their  attenuation due to molecular  viscosi ty,  and Ic(nk) descr ibes  collisional interaction between the 
quasipart icles  appearing due to the nonlinearity of the hydrodynamic equations. 

It is evident f rom Eq. (1.2) that due to the change of the law of dispersion of the quasipart icles  the 
long wave leads to a modulation of the distribution; in the linear (with respec t  to the amplitude of the long 
wave) approximation this modulation has an inhomogeneous and anisotropic t e rm 6nk(r,  t) proport ional  to 
the angles of inclination of the surface caused by the long wave. In turn, due to the interaction of the waves, 
the modulation of the distribution and the appearance of the dependence on the coordinates lead to the ap- 
pearance of additional forces  acting on the long wave and, as shown below, causing a change in its velocity 
and an additional attenuation. As seen from (1.2) a force equal to 8Wk/Or acts on a quasipart icle,  whereas 
in the equation for the long wave a r eve r se  force averaged over all quasipart icles  appears.  Thus a coupled 
sys tem of equations must  appear describing both the turbulence in the presence of the long wave and the 
long wave in the presence  of turbulence.  (This sys tem of equations is ent i re ly analogous to the equations 
describing the propagation of a coherent  acoustic wave in quas ipa r t i c l e - e l ec t ron  sys tems in metals  [6].) 

In rea l i ty  the situation is a little more complicated than that descr ibed above, since the coherent  
wave leads not only to the appearance of means of the form 

6n~ (q, t) = ~/2 ((a,~*a~+q) q- (a~_qa,~)) 

where a k is the amplitude of the normal  oscillation and q is the wave vector  of the long wave, but also to 
the appearance of "anomalous" means of the form (aa*), ( a ' a* )  . Therefore ,  the complete sys tem of 
equations also includes equations for these means .  

The coupled sys tem of equations describing the interaction of the long coherent  wave and turbulence 
As obtained in Secs.  2 and 3. The additional attenuation of the coherent  wave in the presence of turbulence 
is discussed in Sec. 4. The "collision integrals" describing the p rocesses  of interaction of waves in the 
presence of a long coherent  wave are obtained in Sec. 5. The change in the spect rum of the height c o r -  
re la to rs  of the liquid surface,  caused by the interaction with the long coherent  wave, is investigated in 
Sec. 6. 

2. Derivation of Equations for Coherent  Wave in the Presence  of Turbulence.  The basic sys tem of 
equations of hydrodynamics for surface agitation has the form 

' O't " z =~  :F- g ~  - -  T A~ = - -  (7~P) 2 Iz=~ - -  ~ - -  [ A ~  -t- ( V ~ V ) ]  ( V ~ )  ~ 

a;at a~o~ z=~ = - (V~v~)  Iz=~, a ~  = 0, ~ l  . . . .  ->  0 (2.1) 

where q~(r, z, t) is the velocity potential of the liquid, ~ (r, t) is the departure of the surface from the 
equilibrium position caused by the agitation, the z axis is directed upward, and z = 0 cor responds  to the 
surface of the liquid in the absence of agitation. 

Following [1, 2] we pass on to canonical variables  ~(r ,  t) and ~ (r ,  t) = ~ I t ,  ~ (r ,  t), t] and introduce 
the normal  coordinates of oscillations of the surface a k and ak* 

( r ,  t )  = 
/ 4k \ , '5 ,  ~ )  [aheik,. + a~*e -~kr) dk (2.2) 
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The Hami l ton ian  of the s y s t e m  of su r f ace  waves  is 

H = - ~  I dr f (VT)2 dz-~ pg f dr f zdz = l%;a~*a~dk 
- - ~  0 

-~-'-~Vr~3a~ ~ a ~ (~) a a 8 kl  ~- B] • +l[vi i . )~aai*a~asf(kt--k ,--k3)  ( + k~ + k3) 

• dk~dk~dka -~ T Wi2' 3~a~ a~*a~aa6 (k~ ~- k2 -- ka-- ka)~-W~�89 • 

• 8 (k~ --  k~ -- ka --  lq) ~- B] dk~dk~dkadka (2.3) 

whe re  for  the sake of b r e v i t y  we have in t roduced  the notat ion k 1 - 1, k 2 - 2, e tc . ,  arid B denotes  a c o m p l e x -  
conjugate  quant i ty .  The t e r m s  d e s c r i b i n g  the p r o c e s s  of gene ra t ion  and annihi lat ion of the four  waves  a re  
not  given,  s ince  they  do not give any cont r ibu t ion  in the approx imat ion  c o n s i d e r e d  below.  The dynamic  
equat ions  for  the ampl i tudes  a k and ak*  a re  obtained by a va r i a t i on  of the Hamil tonian  with r e s p e c t  to iak* 

and --iak: 

0% 5H ~%* 6H (2.4) 
Ot ~ Sa..~ ' Ot -- i 8% 

The p r e s e n c e  of the c o h e r e n t  wave leads  to the r e s u l t  that  the value of the ampl i tudes  of n o r m a l  
osc i l l a t ions  a v e r a g e d  over  the e n s e m b l e  of phases  b e c o m e s  nonze ro  

<a& = A~ ~= 0 (2.5) 

Here  and below q is the wave v e c t o r  of the c o h e r e n t  wave .  The s m a l l n e s s  of the angles of incl inat ion 
of the c o h e r e n t  wave p e r m i t s  us to r e s t r i c t  o u r s e l v e s  to the l i nea r  approx imat ion  in r e s p e c t  to Aq. The 
weak  na tu re  of the in t e rac t ion  of fe rs  the poss ib i l i t y  of inves t iga t ing  the s y s t e m  of su r f ace  waves  as a se t  of 
two s y s t e m s ,  c o h e r e n t  and tu rbu len t .  

Le t  us de r ive  the equat ions  of mot ion fo r  the ampli tude of the c o h e r e n t  wave Aq in the p r e s e n c e  of 
tu rbu lence .  This  can be done by ave rag ing  Eq .  (2.4) ove r  the s t a t i s t i ca l  e n s e m b l e  of r a n d o m  phase s .  Tak-  
ing (2.5) into cons i de r a t i on ,  we obtain 

OAq ~- i ~ A q  -~ 2iA~ f r~z(i) + 2iA*~ ~ W(~2:)~ Ot vv ~q, @n,.dk _ J , , q, _qn~dk = 

2rr(1) + V(q~)~. k+q (a~*a*~_q>] dk (2.6) : - - ' I [ V ~ ) , . q _ , ( a , ~ a q _ , ) - ~  , , §  ,. , (a,*a,+,) 

As seen f r o m  (2.6) the p r e s e n c e  of i n t e rac t ion  in the s y s t e m  of su r f ace  waves  leads  to the appearance  
of the c o r r e l a t i o n  funct ions  ( akaq_k)  , ( a k * a k + q )  , ( a k * a _ k _ q )  in the equat ion for  the ampli tude of the c o -  
h e r e n t  wave;  these  c o r r e l a t i o n  funct ions  d e t e r m i n e  the addit ional  f o r ce s  act ing on the c o h e r e n t  wave f r o m  
the side of the tu rbu len t  s u b s y s t e m .  These  f o r c e s  appear  due to the fac t  tha t  in the p r e s e n c e  of the c o h e r -  
ent  wave the d i s t r ibu t ion  of the q u a s i p a r t i c l e s  b e c o m e s  d i f fe ren t  f r o m  (1.1). 

3.  Desc r ip t i on  of Turbu lence  in the P r e s e n c e  of C o h e r e n t  Wave .  In o r d e r  to obtain a c lo sed  s y s t e m  
of equat ions  it is n e c e s s a r y  to de r ive  the equat ions  for  the c o r r e l a t i o n  funct ions oecur ing  in (2.6). F o r  the 
c o r r e l a t o r  ( a k * a k + q )  we have 

(1) ~z(z) 2 (ak*al*ao*) 5 (k -~ q ~- kl ~- k2) Bo] dkldk2 (3.1) d- 2V2; ~+~, i (a~,.*a*ia2) (5 (k q- q-~kl --  k2) d- ~+~, i, . 

H e r e  B 0 denotes  c o m p l e x - c o n j u g a t e  t e r m s  with the subs t i tu t ion  k ~ k + q .  

The p r e s e n c e  of the c o h e r e n t  wave o f fe r s  the poss ib i l i t y  of e x p r e s s i n g  the t r ip le  e o r r e l a t o r s  in t e r m s  
of the sum of p roduc t s  of double e o r r e l a t o r s  and the ampli tude of the c o h e r e n t  wave ( a ) .  In the l i n e a r  
(with r e s p e c t  to Aq) app rox ima t ion  the t e r m s  that  are  a p roduc t  of ( a )  and the anomalous  double c o r r e l a t o r s  
( a a )  and ( a ' a * )  m u s t  be omi t ted ,  s ince ,  as will  be shown below, the l a t t e r  are  p ropo r t i ona l  to the ampl i -  

bade of  the c o h e r e n t  wave .  In p roduc t s  of the f o r m  ( a )  ( a  *a} only those  means  a re  r e t a ined  where  the 
pa i r ed  c o r r e l a t o r  is a s t a t i o n a r y  function of d i s t r ibu t ion  (1.1). F o r  example ,  fo r  the c o r r e l a t o r  (ak*a ia2 )  , 
we obtain 

(ah*ala2) = (a2> nk8 (k - -  kl) ~ (al> nh8 (k --  k~) (3.2) 
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Withthe  above s t a t e m e n t  taken into cons ide ra t ion  Eq .  (3.1) r e d u c e s  to the f o r m  

[V(~ 1) +q; k, qAq 2[_ V (1) - *  

where  I t is the l i n e a r i z e d  co l l i s ion  in tegra l ,  which di f fers  f rom the usua l  in t eg ra l  in the p r e s e n c e  of the 
anomalous  c o r r e l a t o r s .  The e x p r e s s i o n  for  I i is obtained by uncoupl ing h ighe r  c o r r e l a t i o n  funct ions and 
is g iven  in Sec .  5. 

Below we sha l l  inves t igate  the case  where  the c o h e r e n t  wave is a long wave (q << k), and in Eq .  (3.3) 
expans ion  in q / k  << 1 can  be c a r r i e d  out: 

a% (~) * (3.4) Ut;; k+q, 

where  v k = ~C0k/Ok is the g roup  ve loc i ty  of the sho r t  waves .  We note that  the r e p r e s e n t a t i o n  of the s e a  
su r f ace  in the f o r m  of long waves ,  on which the re  are  r ipp les ,  has  been found useful  a lso in a n u m b e r  of 
r ad iophys i c s  p r o b l e m s  [7]. 

As seen  f r o m  (2.6), along with the n o r m a l  c o r r e l a t o r s  (a*a )  t he re  a lso  appear  anomalous  c o r r e -  
l a to r s  ( a ' a *  } (aa }, fo r  which the equat ions  a re  obtained in an analogous way,  and fo r  q << k they have the 
f o r m  

a . ] * * 
-'SY-- 2~o)~f (a~*a_~_~) -- 4in~ "i v~,-(2)q, ~+qAq + V mq; ~, l~+q Aql = I~ 

(3.5) 

The co l l i s ion  in tegra l s  I~ and 13 a re  given below.  The equat ion for  the ampli tude A_q* and the c o r r e l a t i o n  
funct ions  a s soc i a t ed  with it a re  obtained f r o m  (2.6), (3.4), (3.5) by taking complex  con juga tes  and r ep lac ing  
q ~  b y - q  

We note tha t  the f o r c e  in E q s .  (3.4), (3.5) is p ropor t i ona l  to the ampli tude of the c o h e r e n t  wave .  If 
with the use of (3.4) in r - r e p r e s e n t a t i o n  we wr i te  the equation for  the c o r r e c t i o n  to the d i s t r ibu t ion  function 
in the s u b s y s t e m  of qua s i pa r t i c l e s  5nk( r ,  t), c a u s e d  by the p r e s e n c e  of the long c o h e r e n t  wave,  then in a c -  
c o r d a n c e  with (1 2)  this equat ion acqu i res  the sense  of the l i nea r i zed  kinet ic  equat ion 

06,~ k (r. t) . -- I ~ (3.6) Ot T (V~V) (~n~ (r, t) ~- 06%.or(r, t) On~:Ok 

whe re  

6n~ (r, t) = T [(al~*a~-~q> + (a~_qat:>] eiq"dq (3.7) 

• _ (q) + I 1 "  ( -  q)l 

and the c o r r e c t i o n  to the f r e q u e n c y  of the s h o r t  waves  due to the modula t ion  of the c o h e r e n t  wave has  the 
f o r m  

2 ~'V (1) A -- ~zo) a* + B1] e~qrdq (3.8) 

Here  B 1 denotes  c o m p l e x - c o n j u g a t e  t e r m s  with the r e p l a c e m e n t  q--* - q .  

The quant i ty  5OJk(r, t) includes  both the Doppler  shif t  and the c o r r e c t i o n s  a s s o c i a t e d  with the ef fec t  of 
the ine r t i a  f o r c e s  and the change of the local  sca le  s ize  on the long c o h e r e n t  wave;  I ~ d i f fe rs  f r o m  I c in Eq .  
(1 ~2) in the p r e s e n c e  of anomalous  c o r r e l a t i o n  funct ions .  

In the l i nea r  approx imat ion  in Aq the anomalous  c o r r e l a t o r s  appear  due to the d i s rup t ion  of the chaot ic  
na ture  of the phase s  in the tu rbulen t  s u b s y s t e m  in the p r e s e n c e  of the c o h e r e n t  wave and due to the p r e s e n c e  
of t e r m s  in the Hamil tonian  that  de sc r ibe  p r o c e s s e s  with nonconse rva t ion  of q u a s i p a r t i c l e s .  

4 .  D i spe r s ion  and Absorp t ion  of Long Waves .  The equat ions  fo r  the ampli tude of  the c o h e r e n t  wave 
Aq (2.6) and the c o r r e l a t i o n  funct ions ( a k * a k + q > ,  (ak, aq_k> ,  ( a k * a - k - q * >  (3.4), and (3.5), t oge the r  with 
the equat ions  for  the ampl i tudes  A_q* ,  A_q, Aq* and of the c o r r e l a t i o n  funct ions a s soc i a t ed  with them,  
which are  obtained f r o m  the above equat ions  by making  the subst i tu t ion q -* - q  and by complex  con juga -  
t ion,  f o r m  a comple te  s y s t e m  of in tegrod i f fe ren t i a l  equat ions  de sc r ib ing  the in t e rac t ion  of long c o h e r e n t  
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waves and turbulence .  Different  types of co r r e l a t i on  functions are  found to be coupled in the equations for 
the ampli tudes of the coheren t  waves  (2.6) as well  as in the "coll is ion in tegra l s"  (5.1), (5.2). The complete  
sy s t em of equations can be symbol ica l ly  wri t ten  in the following way: 

b~A~ = -- i f P i l / f l k  (4.1) 

I s  -}- "v~.f~ : Q~A~ (4.2) 

Here  A l is the se t  of all ampli tudes of the coheren t  waves  Aq, A q *, A_q, Aq *; f i  are  pa i red  c o r -  
re la t ion  functions (normal .and anomalous) induced by the coheren t  wave with amplitude A l ; the f o r m s  of 
the different ia l  ope ra to r s  Di / ,  Kil and m a t r i c e s  Pi l  and Qil are  c l e a r  f rom a compar i son  of (4.1) and (4.2) 
with E q s .  (2.6), (3.4), (3.5) and the r emain ing  equations occurr ing  in the s y s t e m .  The in tegra l  ope ra to r  de-  
s c r i be s  the in te rac t ion  in the turbulent  s u b s y s t e m  

As seen f rom Eq.  (2.6), the ampli tudes of the coheren t  waves  Aq and A_q* (and also A_q and Aq*) are  
coupled in p a i r s .  However ,  in the col l is ion in tegra ls  all the co r r e l a t i on  functions occur r ing  in the equation 
are  coupled with each  other ;  thus the col l is ion in tegra l  couples  all the four ampli tudes Aq, A_q* ,  A q, Aq* .  

In the case  of an infinite s y s t e m  the solution of (4.2) in Fou r i e r  components  with r e s p e c t  to t ime  can 
be fo rmal ly  wri t ten in the fo rm 

/~ = R~ (o)) Q ~ A m  (4.3) 

where  Ri/(w) is the t i m e - F o u r i e r  component  of the Green ope ra to r  of equations for  the co r re l a t ion  functions.  
Taking the Fou r i e r  t r a n s f o r m  with r e s p e c t  to t ime and subst i tut ing (4.3) into (4.1), we obtain 

D~ ((o) A~ = --izi~ ('a)) A,.~, %~ = I  P i~B~,~ (0)) Q,,~dk (4 ~4~ 

Separa t ing  out the t e r m s  connected with the in terac t ion  f rom ma t r i x  Dil  

~ i n t  i Di~ = (--~ +(0~9 5i~ +--i~ ,o)q =___+% 

and grouping them with r  we rewr i t e  (4.4) in the fo rm 

{(--co +0)q9 5 .  +d~l } A t = 0 ,  (d~ = D  ia~ ~ + izi~) (4.5) 

The express ion  for  dil is not given here ;  it can be obtained f rom a compar i son  with the preceding  
fo rmu la s .  Equating the de te rminan t  of the homogeneous l inear  s y s t e m  of equations (4.5) to ze ro ,  we obtain 
the d i spers ion  equation 

Det ](--co _]_coql)~z + d~zl = 0 (4.6) 

The analys is  of Eqs .  (4.4), (4.6) is v e r y  compl ica ted .  We shall  r e s t r i c t  ourse lves  to the case  where  
the coupling among the different  types of c o r r e l a t o r s  in the col l is ion in tegra ls  can be d i s regarded ;  we 
wri te  these in tegra ls  in ~--approximation:  

I1 ~ -- vl <a'kay+q}, I~ ~ -- v 2 <akaq_k>, I a ~  -- % <ak*a*_z_q> 

Then equations (4.4) b r e a k  up into two s y s t e m s  connecting the amplitude ,r with A_q* and A_q with 
Aq* : 

- - ( c o  - - ( 0  ~ -b~'(q) A*q* = 0  

- -  (o + 0)~ A_q* - -  ~* (q) Aq : 0 ( 4 0 7 )  

whe re 

i[ 2 I V(t) ~0 ~ ~ -  0)q -,~ 2 ' (1) 4 -  '+q :  k' q P a n t  
W,~.q, qkn~  _ q v .  - -  o - -  ivj q 0 k  

[ liVe; q, k, _qn~ 

V (i) ~ n -(2) i= ] 2] q;k,q-k ~ 21~'~,q,k+q % 

2V (1) V (1) 0 %  91X1) V(2) /~+q; k, q k-q; k, q ~ "  q; If, q -k  k ,  q, q-kni t  

qv~. -- o) -- iv1 q ~ 2~% -- o) -- ~v~ 
9V(1) V(2) rt ] 

-- "'q;~,~+q ~,q,k+q k dk 
J 2~ + ~ + iv3 
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and Wq is the frequency of the long wave with wave vector q in the absence of turbulence. Similar equations 
connect A_q and Aq*. From (4.7) we find that the roots of the dispersion equation are 

~i, 2 = • VI (0~~ ]2 _ l )~ (q)12 -- (Ira (0qO)2 + i Im (0q~ (4.9) 

It  is ev ident  f r o m  (4.7) tha t  in the l i nea r  approximat ion  in r e s p e c t  of the in te rac t ion  the r o o t s  of the 
d i s p e r s i o n  equat ion have the f o r m  

03 1 ~ ( 0 q  ~ ( 0 2  ~ - -  ( 0 ~  

It is seen f r o m  (4.1) tha t  because  of the in te rac t ion  through the turbulent  s u b s y s t e m  waves  with wave 
v e c t o r s  q and - q  ge t  coupled .  As a r e su l t ,  the f r equency  d e g e n e r a c y  in long waves  propaga t ing  in opposite 
d i r ec t ions  is r e m o v e d  and new types  of osc i l la t ions  appear ,  whose n o r m a l  coo rd ina t e s  bq and b_q* have 
the following f o r m  in the l i nea r  approx imat ion  in r e s p e c t  of )t ( q ) / ~ q :  

bq = A~ T ~'(q) ~* * ~'*(q) Aq (4.10) ] 2roq " ' -q '  b_q = A~q @ 

Thus the p ropaga t ion  of a c o h e r e n t  wave in a reg ion  with s t a t i s t i c a l l y  homogeneous  i so t rop ic  t u r b u -  
lence is accompan ied  by the appearance  of a r e f l ec t ed  wave with re f l ec t ion  coef f ic ien t  X (q)/2C0q. Making 
use of the e s t ima te  for  the m a t r i x  e l e m e n t s  fo r  q << k 

V(I~ g (1) ~ g':,kqV, cos (k~ q), Tz(2) _ V m k+q ;  k ,  q ~ - -  b:; k+q,  q v l ~ ,  q,  lf+q ~ q; R, q-l~ ~ g~/4]~q :3/~ 

and of the co l l i s ion  f r equenc i e s  v(k) ~ c~k2COk -1 [1, 2] for  g r av i t y  r ipples  and v(k) ~ c~k3/4for c a p i l l a r y  
r ipp les  (see also Sec .  5), we find that  the re f l ec t ion  coef f ic ien t  of a long g r a v i t y  wave in the p r e s e n c e  of 
g r a v i t y  r ipp les  is of the o r d e r  

2% o, ko ~ ~  
In the p r e s e n c e  of c a p i l l a r y  r ipp les  the r e f l ec t ion  coef f ic ien t  is of the f o r m  

~(q) ,~(k) q % (q)2 (k_~_)2 

Here  co a is the f r equency  c o r r e s p o n d i n g  to the l o w - f r e q u e n c y  boundary  of the ine r t i a l  r ange  of g r a v -  
i ty wave tu rbu lence  and k a is the l o w - f r e q u e n c y  boundary  of the range  of g r a v i t y  o r  c a p i l i a r y  tu rbu lence .  

Let  us c o n s i d e r  the addit ional  at tenuation of the c o h e r e n t  wave in the p r e s e n c e  of tu rbu lence .  The 
long c o h e r e n t  wave c a u s e s  a depa r tu r e  of the d is t r ibu t ion  of the quas ipa r t i c l e s  f r o m  the s t a t i o n a r y  d i s -  
t r ibu t ion  (1.1). The in t e rac t ion  in the turbulent  s u b s y s t e m  r e s t o r e s  the s t a t i o n a r y  d i s t r ibu t ion  and the reby  
leads  to addit ional  a t tenuat ion of the c o h e r e n t  wave .  

Eva lua t ing  {4.8) unde r  the condi t ion v -l(k) << ! ,  we find that  when a long g r a v i t y  wave p ropaga t e s  in a 
reg ion  with g r av i t y  r i p p l e s ,  the d e c r e m e n t  of the addit ional at tenuation of the long wave is in o r d e r  of m a g -  
nitude equal  to 

Imo % ( f ) ' /~  (4.11) 

In  the c a s e  of c a p i l l a r y  r ipp les  the d e c r e m e n t  of at tenuation has the f o r m  

Im (0 / (0 ~ (q / k~) 2 (4.12) 

T~e addit ional  a t tenuat ion of a long g r av i t y  wave p reva i l s  over  the v i scous  at tenuat ion for  c 1 << 
( q / k a ) l / 2 c 0 / y k a  2 in the p r e s e n c e  of g r a v i t y  r ipp les  and for  q >> (Tka)g -~ in the p r e s e n c e  of c a p i l l a r y  r ipp les ,  
where  Y is k inemat ic  v i s c o s i t y  of w a t e r .  The at tenuation of long waves  in tu rbu lence  will  be inves t iga ted  
in g r e a t e r  deta i l  s e p a r a t e l y .  

5. Col l i s ion  In t eg ra l .  The co l l i s ion  in tegra l s  I1, I2, 13 in E q s .  (3.4), (3.5), de sc r ib ing  the p r o c e s s e s  
of in t e rac t ion  of waves  in the tu rbulen t  s u b s y s t e m  in the p r e s e n c e  of a c o h e r e n t  wave,  a re  obtained by d e -  
coupl ing the chains  of equa t ions  for  the c o r r e l a t i o n  functions (see [8]). It is  conven ien t  to make  use  of no ta -  
t ion s i m i l a r  to those used  by K a s s e l m a n  [4] fo r  wr i t ing  the unwieldy e x p r e s s i o n s  thus obtained;  we in t ro -  
duce an addit ional  p a r a m e t e r  s which takes  the values  ~= 1, where in  

86 



a " =  {:~ m a*, .s' = 4-1 
(Z~ S z - - t  

With this  no ta t ion  E q s .  (2.6), (3.4), (3.5) become  

= s's" 1 Vcl, I~, q-~ / s" s" 

�9 0 i ( s ' ( % 4 -  s"o)q_k) \asq~as, , (q-h.))  @ 2t(.s" ni~ 4 -  s rtq_~) E V k ,  q_lr As,q = I  s's" 

where  I s ' s "  are  c o l l i s i o n  i n t e g r a l s  

I + - ( - q )  ~=11, I - - ( - - q )  ~ 1 2 ,  I ++( -q )  ~ I ,  

In the case  of c a p i l l a r y  (decay) t u r b u l e n c e  for  q << k the c o l l i s i on  i n t e g r a l s  a re  

%.,V-S's~s~. , / s~ s" ,, I +'+" = - -  2 n  ~ ,  j t' ~12 [ V ~  ~''-~ (s'tn., @ 32/Zl ) \as~ as,,(q_~)/ > 
sisesa 

- -  - -  2 Tz . . . . . .  -~" (stn~ 4-  s"nt) • 

X \a~(q_~) / ~ a s's,~J \ 6 (s~o& --  sl~o t --  s"c%)] 8 (k --  kl - -  k2) 4- B2} d k t d k 2  (5.2) 

Here  132 denotes  t e r m s  with the s u b s t i t u t i o n  s '  ~ s"  and s i m u l t a n e o u s  subs t i t u t i on  k ~- q - k.  

In o r d e r  to obta in  c o l l i s i o n  i n t e g r a l s  in  the c a s e  of g r a v i t y  (nondecay) t u r b u l e n c e  we f i r s t  c a r r y  out a 
c a n o n i c a l  t r a n s f o r m a t i o n  with Hami l t on i an  (2.3) so as to e l i m i n a t e  t e r m s  that  are  cubic  in the n o r m a l  co -  
o r d i n a t e s .  It  is  n e c e s s a r y  to keep in m i n d  tha t  in the p r e s e n c e  of a c o h e r e n t  wave the value of the n o r m a l  
c o o r d i n a t e s  ave raged  over  the e n s e m b l e  of phases  is n o n z e r o .  T h e r e f o r e ,  before  c a r r y i n g  out the c a n o n -  
i ca l  t r a n s f o r m a t i o n  we m u s t  e x p r e s s  the n o r m a l  c o o r d i n a t e s  in the f o r m  a s = a ' s  + (a s }, af ter  which of 
the cubic  t e r m s  in the H a m i l t o n i a n  we s e p a r a t e  out those that  are  l i n e a r  in ( a )  . The s e p a r a t e d  t e r m s ,  to -  
ge the r  with 

H o  = ! o~j~al~*alflk 

wil l  be the new ( u n n o r m a l i z e d  due to the p r e s e n c e  of the c o h e r e n t  wave) Hami l ton ian  of n o n i n t e r a c t i n g  
quas ip  a r t i c l e  s 

- 0 §  > ' f  . . . .  = Vl~'3~al ' ~a~ (aa ~} 6 (slkl 4- s2k2 4- ~3k3) d k f l k ~ d k .  

af ter  which the c a n o n i c a l  t r a n s f o r m a t i o n  can  be c a r r i e d  out, but  now with H 0. The s e p a r a t i o n  of the c o h e r -  
en t  wave in the n o r m a l  c o o r d i n a t e s  makes  it  poss ib l e  to take into c o n s i d e r a t i o n  the r e n o r m a l i z a t i o n  of the 
f r e q u e n c y  in the H a m i l t o n i a n  in the l i n e a r  app rox ima t ion  in r e s p e c t  of ~ and r e s u l t s  in the appea rance  of 
the force  t e r m  in the k ine t i c  equa t ion .  F o r  g r a v i t y  t u r b u l e n c e  the co l l i s i on  i n t e g r a l s  for  q << k have the 
f o r m  

i~,~,, 2~ ~, f , _~,~ . . . . . .  - -  [Th't23 (stn2n~ F s2nln3 -,- {S T~:I~ 3 s~,-s~,-s2,-sa 
3 

81~2~8a 
s" s a �9 s a - s "  ~ sz,_sa @ sanln2) (as,,(q_loa~j~} 5 (sa(ot; - - s ~ w ~  - -  s~,~2 - -  ,%<~)3) @ 3 T ~ / ~  • 

x 8 (k --  k~ --  k~ --  k~) 4- Bs} d k t d k ~ d k ~  (5.3) 

Here  B 3 denotes  t e r m s  with the r e p l a c e m e n t  s '  ~ s" and s i m u l t a n e o u s l y  k ~ q - k ; T is the m a t r i x  
e l e m e n t  of the "ef fec t ive"  f o u r - p a r t i a l  Ham i l t on i a n  (see [2]), in which the t h i r d - o r d e r  t e r m s  in a '  have been 
e l i m i n a t e  d with the canon ic  al t r a n s f o r m a t i o n .  

6. S p e c t r u m  of T u r b u l e n c e  in the P r e s e n c e  of Long Waves .  The F o u r i e r  c ompone n t  of the he ight  
c o r r e l a t o r  of the l iqu id  su r f ace  is  g iven  by the r e l a t i o n  

S ( k , r , t )  = 1 i (~(r , t )~ (r @ p, t ) )e  ~k~'dp (6.1) 
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In the s t a t i o n a r y  ea se ,  the following s imple  re la t ion  exis t s  between the d is t r ibu t ion  function n k and 
the s p e c t r u m  S (k) : 

( 4k y,, 
S(k) = \ ~ i  ni: 

Making use  of the f o r m u l a s  for  changing  over  to canonica l  va r i ab le s  {2.2) we find that  the p r e s e n c e  
of the long c o h e r e n t  wave leads  to a modula t ion of the s p e c t r u m  and to the appearance  of an addit ional  t e r m  
in the s p e c t r u m  

S (k, r, t) = S (k) + 63 (k, r, t) 

depending on the c o o r d i n a t e s  and t ime :  

4 k  \1/~ �9 * * * ~ * ~S(k, r, t) = ~ )  e~q r {(a,~aq_k) + (a_~ai~_q)+ (a_~aq_~)T(a~ ~a~)}, (6.2) 

Subst i tut ing the e x p r e s s i o n s  fo r  the c o r r e l a t o r s  f r o m  (4.3), we find that  in the l inea r  (in r e s p e c t  of 
the ampli tude of the c o h e r e n t  wave) approximat ion  the inhomogeneous  p a r t  of the s p e c t r u m  of the turbulence ,  
c a u s e d  by the p r e s e n c e  of  the inhomogeneous  wave,  is of the f o r m  

( 4k~p_,k2 )'/'e~,ir ~lRjl (oj) 0,mA m (6.3) 8S (k, r, t) = \ 
g + 

J 

where  the index j takes  the values  f r o m  1 to 4 c o r r e s p o n d i n g  to four  c o r r e l a t o r s  in (6.2). F o r  an e s t i m a t e  
of 5S(k, r ,  t) we replace the col l i s ion integrals by the relaxation t imes as before; then (6.3) becomes 

4k  \W~ ~. r( 4nk ~" q; Ir q - ~ q  ~- ~, q, q - k " - q .  - ; k, qAq  + t~; q-k, qA*_q -~  J~4, ( 6 . 4 )  
8 S ( k , r , t ) = - -  g+ap-~k ) eq I" ~ ~  - -2q~-~ - - ~ + q v ~ - - i v  

Here  B 4 denotes  c o m p l e x  conjugate  t e r m s  with the r e p l a c e m e n t s  k ~ - k ,  q -~ - q,  w --* - w .  

Making an o rde r -o f -magn i tude  e s t ima te  of (6.4) fo r  q << k02/k, c0v -l(k) << 1, we have 

Re 8S (k, r, t) ~ q~~ (r, t) L\~'~ / q 

where  ~ ~ t) is the he ight  of the long wave .  

F o r  the case  of g r a v i t y  tu rbu lence ,  c ons ide r i ng  the s m a l l n e s s  of the quant i ty  [Wq/p (k)] 2 << 1, we have 

6S (k, r, t) ~ q~~ (k) 

F o r  cap i l l a ry  tu rbu lence  we have 

0)q 2 ^ for  ( - ~ ) 2 ~ [ v ~ ) ] 2  8S (k, r, t) - -  q~~ (r, t) [ v ~ - ]  S (k) cos (k, q) 

The l a s t  r e s u l t  can be obtained if we keep in mind that  in the c a s e  under  inves t iga t ion  we can wr i te  

Re 8s (k, r, t) Re 8n~ (r, t) 
S (k) ,~ 

F o r  qv k << Wq, Wq ~-l(k)<< 1 .  f r o m  the kinet ic  equat ion (3.6) we get  

Re6n;~ (r, t) ~ 6~)~ (r, t) q 0% (% (6.6) 
O k  v a  (k)  

The addit ional  t e r m  in the law of d i spe r s ion  of s h o r t  waves  is ma in ly  due to the Dopple r  shif t  of the 
f r equency .  Thus 

~co~ ~ ku (r, t) ~ o)~. y ~ q  ~~ cos (k,q) 

where  u(r ,  t) is the ra te  of d i s p l a c e m e n t  of the l iquid su r f ace  due to the p r e s e n c e  of the long g r av i t y  wave.  
Subst i tut ing the l a s t  e x p r e s s i o n  into (6.6) we get  

Re 8s (k, r, t) [ v ~ )  ]~ cos s ( ~  q;~ (r, t) (k.q) 
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